
Multi-Objective Constraint Satisfaction
for Mobile Robot Area Defense

THESIS

Kenneth W. Mayo, Second Lieutenant, USAF

AFIT/GCE/ENG/10-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/10-03

Multi-Objective Constraint Satisfaction

for Mobile Robot Area Defense

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Kenneth W. Mayo, B.S.C.E.

Second Lieutenant, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/10-03

Multi-Objective Constraint Satisfaction

for Mobile Robot Area Defense

Kenneth W. Mayo, B.S.C.E.
Second Lieutenant, USAF

Approved:

//signed// 12 Mar 2010

Dr. Gilbert L. Peterson
Chairman

Date

//signed// 12 Mar 2010

Lt Col Brett J. Borghetti, PhD
Member

Date

//signed// 12 Mar 2010

Maj Michael J. Mendenhall, PhD
Member

Date

AFIT/GCE/ENG/10-03

Abstract

In developing multi-robot cooperative systems, there are often competing objectives

that need to be met. For example in automating area defense systems, multiple

robots must work together to explore the entire area, and maintain consistent com-

munications to alert the other agents and ensure trust in the system. This research

presents an algorithm that tasks robots to meet the two specific goals of exploration

and communication maintenace in an uncoordinated environment reducing the need

for a user to pre-balance the objectives. This multi-objective problem is defined as

a constraint satisfaction problem solved using the Non-dominated Sorting Genetic

Algorithm II (NSGA-II). Both goals of exploration and communication maintenance

are described as fitness functions in the algorithm that would satisfy their correspond-

ing constraints. The exploration fitness was described in three ways to diversify the

way exploration was measured, whereas the communication maintenance fitness was

calculated as the number of independent clusters of agents.

Applying the algorithm to the area defense problem, results show exploration

and communication without coordination are two diametrically opposed goals, in

which one may be favored, but only at the expense of the other. This work also

presents suggestions for anyone looking to take further steps in developing a physically

grounded solution to this area defense problem.

iv

Acknowledgements

I would like to thank my family and friends for their support and my committee

for their guidance.

Kenneth W. Mayo

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

List of Symbols . x

List of Abbreviations . xi

I. Introduction . 1

1.1 Problem . 2
1.2 Methodological Approach . 3
1.3 Significance and Limitations . 4
1.4 Outline . 4

II. Literature Review . 6

2.1 Agents and Multi-Agent Systems . 6
2.2 Constraint Satisfaction Problems . 9
2.3 Methods for Solving Constraint Satisfaction Problems 11
2.4 Evolutionary Algorithms . 13
2.5 Multi-Objective Solvers . 16

2.5.1 Non-Denominated Genetic Sorting Algorithm II
(NSGA-II) . 17

2.5.2 Pareto Optimality . 18
2.5.3 jMetal and JNSGA2 . 20

2.6 Multi-Robot Tasking . 21
2.7 Wireless Communication . 23
2.8 Wireless Sensor Networks . 25
2.9 Markov Decision Processes . 25
2.10 Solving an MDP . 28
2.11 Trust . 29
2.12 Summary . 30

III. Area Defense With the Non-Dominated Sorting Genetic
Algorithm II . 32

3.1 Framework Development . 32
3.2 Limits of MDPs . 33

vi

Page

3.2.1 Domain and Environment . 34
3.2.2 The Constraint Satisfaction Problem . 36
3.2.3 Using NSGA-II . 38
3.2.4 Gene Structure . 38
3.2.5 Distance Maximization . 40
3.2.6 Covered Area Maximization . 40
3.2.7 Tiled Area Coverage . 41
3.2.8 Connectivity Fitness . 42

3.3 Agent Behaviors . 43
3.3.1 The Dudek Taxonomy . 44

3.4 Summary . 45

IV. Simulation Testing and Results . 46

4.1 Testing . 46
4.2 Parameter Test Results . 47
4.3 Observation and Communication Tests . 48
4.4 NSGA-II Parameter Test - Mutation and Crossover

Probabilities . 51
4.5 Fitness Function Tests . 51

4.5.1 Maximizing Distance . 54
4.5.2 Maximizing Area . 55
4.5.3 Tiled Space . 56

4.6 Domain Altering Test - Number of Agents . 57
4.7 Behavioral Simulation Results . 58

V. Conclusions . 61

5.1 Summary . 61
5.2 Future Work . 62

Bibliography . 64

vii

List of Figures

Figure Page

1 A Sudoku board . 10

2 The N-queens problem . 12

3 A generic EA . 15

4 Pareto Example . 20

5 Communication Radius < Observation Radius . 49

6 Communication Radius > Observation Radius . 50

7 Increased Observation And Communication . 52

8 Simulation with Altered Probabilities . 53

9 Pareto Front for MaxDistance Fitness . 55

10 Pareto Front for MaxArea Fitness . 56

11 Pareto Front for Tiled Fitness . 57

12 An Ideal Tiled Solution . 57

13 Simulation with More Agents . 59

14 Behavior-based visualization . 60

viii

List of Tables

Table Page

1 Default Simulation Parameters . 47

2 Simulation Parameters . 48

3 Average Distances Between Agent and Neighbors,
Comm Distance = 50 . 58

4 Average Distances Between Agent and Neighbors,
Comm Distance = 150 . 58

5 Average Distances Between Agent and Neighbors,
Comm Distance = 300 . 58

ix

List of Symbols

Symbol Page

I Population Genome Description . 15

Φ Fitness Function . 15

ΩEA Set of Genetic Operators for an EA . 15

Ψ The Complete EA Process . 15

s Selection Operator . 15

ι EA Termination Criterion . 15

µ Number of Parent Individuals . 15

λ Population Size . 15

M Number of Objectives . 17

P∗ Pareto Optimal Set . 19

PF∗ Pareto Front . 19

S State Set . 26

A Action Set . 26

T Transition Function . 26

R Reward Function . 26

Π(s) MDP Policy . 26

Ω Observation Set . 26

O Observation Function . 26

I Agent Set . 27

H Time Horizon . 27

IS Interactive State Set . 27

x

List of Abbreviations

Abbreviation Page

MAS multi-agent system . 7

CSP constraint satisfaction problem . 9

EA evolutionary algorithm . 13

MOEA multi-objective evolutionary algorithm . 17

NSGA non-dominated sorting genetic algorithm . 17

NSGA-II non-dominated sorting genetic algorithm II 17

jMetal Metaheuristic Algorithms in Java . 20

JNSGA2 Java non-dominated genetic sorting algorithm II 20

MANET mobile ad-hoc network . 23

MDP Markov decision process . 25

POMDP partially observable Markov decision process 26

DEC-POMDP decentralized partially observable Markov
decision process . 26

I-POMDP interactive partially observable Markov decision
process . 27

xi

Multi-Objective Constraint Satisfaction

for Mobile Robot Area Defense

I. Introduction

Dull, dangerous, or extremely precise jobs often utilize robotic systems in place

of a human worker [51]. Robots can fill prescriptions at a pharmacy faster and with

more precision than a tired or bored human worker. They move radioactive material

in power plants and weapons manufacturing facilities without the risk of exposure or

poisoning. They manufacture parts of everything in our daily lives, from cars to cell

phones to toasters, with a precision unequaled by the most skilled human craftsman.

One application of robotics is to fully automate area and building defense to re-

place human resources with more expendable systems. These systems need to perform

all of the tasks as their human counterparts, including maintaining communication,

achieving tasks, and maintaining a current view of the environment. This entire de-

fense system relies on many smaller components to operate, including good communi-

cation and trust between the agents in the cooperative system. Good communication

is also important so that the users responsible for the automated system can trust

the decisions made by the defense system and have an updated status of the system.

Area defense and exploration is the primary goal of the system, but without

trust nothing can be accomplished. An agent could become compromised through

both hardware (physical damage or destruction) and software (reprogramming via

hacking) which could make its contribution to the system unreliable, or even allow

the agent to fully subvert the goals of the rest of the system.

Common stochastic problem representations for multi-agent task problems are

1

based on the decentralized partially observable Markov decision process (DEC-

POMDP) [43]. This specification provides the description of the agents, the environ-

ment, and the agent interactions with each other and the environment. Solutions for

each state are policies which describe the expected actions an agent may take at a

particular time step or environmental state. DEC-POMDP policies allow opponent

modeling in which an agent can take into account the actions of the other agents in

order to gain the greatest reward. However, policy solving algorithms only solve for

one objective, maximizing expected utility, where the expected utility is a numerical

representation of the reward a certain action or series of actions provides [41].

1.1 Problem

One of the many potential applications of distributed robotics is in area defense.

A system of autonomous or semi-autonomous robots are deployed in a geographic

location and perform different tasks. These tasks can range from simple area explo-

ration and mapping, to maintenance of a communications grid, to defense tasking and

engaging enemies on a battlefield. An important element of this defense system is the

trust that exists between all agents and their operators in the environment. Humans

model their trust of one another using past events and those events’ correlation to

desired and intended outcomes. There are many ways to do this with machines as

well.

For example, the TI-POMDP (trust-based interactive partially observable Markov

decision process) trust model [45] allows each agent to use opponent modeling and ob-

servations to determine how trusted the other agents in the system are, and whether

they should cooperate with or disregard the actions of the other agents. This model

depends heavily on communication between the agents for decidability. Strong com-

munication is easily achieved and maintained using a POMDP-based model by keep-

2

ing the agents in physical proximity to each other.

This, however, is only one part of the area defense system as a whole. The other

important element is exploration of the space to allow the robots in the system to

control an area.

This TI-POMDP-based trust system on its own does not allow for the distributed

exploration or defense that a multi-agent area defense system needs. To maintain

trust agents must stay close to each other and maintain communication, but by doing

this they may never achieve their other goal of exploration of the space. This creates

a system with two opposing objectives and a need for a multi-objective policy solver.

1.2 Methodological Approach

This research formulates a constraint satisfaction problem (CSP) to statically solve

for the goals of exploration and communications maintenance in their relationship to

one another, and shows how agents will naturally place themselves to maximize their

observability of the environment, as well as maintaining a communications link when

the agents are unable to coordinate their actions. The ultimate goal is to provide some

baseline for further development of a more complex exploration and communications

maintenance protocol.

This research shows that the objectives of area exploration and communication

maintenance cannot coexist without more structured planning of agent movements,

and that given no other goal or prioritization, agents should naturally position them-

selves at the limits of their observable ranges in order to maintain both goals. Any

coordination or task planning between the agents should utilize this information.

3

1.3 Significance and Limitations

This research, sponsored by the Air Force Office of Scientific Research (AFOSR),

looks to develop a multi-agent system in which multiple conflicting goals can be

considered and used to make decisions. It discusses the challenges present when

working in a large multi-agent and multi-objective environment.

The biggest limitation of this research is its static nature of presenting the con-

straint satisfaction problem. Agents cannot move on their own, nor can they model

other agents, so this information must be used within the context of a much larger

and more realistic system. This thesis makes assertions about using evolutionary

algorithms with POMDP solvers which should assist in any other researcher looking

to pick up where this research leaves off.

1.4 Outline

The following describes the use of the genetic algorithm NSGA-II in solving for

static agent positions in an environment which mesh exploration and communication,

with an emphasis on the need for full distribution in any decision making regarding

area defense. It covers both the original intent of the research and its challenges, as

well as the final product, and the errors made by the researcher that led to that final

product.

This thesis consists of six chapters including this introductory chapter. Chapter

2 consists of a literature review which covers the background necessary for accurately

defining and solving a multi-objective problem using genetic algorithms, as well as

explanations of constraint satisfaction problems. Chapter 3 describes the process

used to develop a solution for this particular multi-objective problem in both its

original intended form and the actual end product. Chapter 4 explains the testing

and validation methods and also presents the results and analysis of results. Chapter

4

5 gives a conclusion of this multi-objective work and outlines future research.

5

II. Literature Review

Rarely is it acceptable or efficient in the real world to remain focused on a single

task. To get anything of real importance completed in a timely manner, goals must

be interlaced and balanced in order to achieve an applicable and useful solution. The

area defense problem in particular has to both explore the environment, as well as

maintain communication among the system members.

This chapter describes both the goals of multi-objective optimization, as well as

aspects of properly modeling the goals for this problem. This includes the description

of a wireless communication environment, the definition of trust and its importance

in facilitating reliable multi-agent operations, and multi-objective optimization with

popular evolutionary algorithms.

2.1 Agents and Multi-Agent Systems

An agent is anything that can sense its environment and act on that environment.

Four common agent types are [41]:

• Simple reflex agents - These agents react based solely on their current perception

of the environment. These agents are often the most primitive, but can be the

fastest to respond to a change in the environment if a rule set is well-enough

defined and handled. They ignore everything they cannot observe and do not

maintain a history or model of the environment.

• Model-based reflex agents - These agents attempt to model their environment,

and possibly the other agents in the system. They use the model to predict

what is hidden from their observation and use that to make decisions about the

next best course of action.

6

• Goal-based agents - These agents attempt to use descriptions of a desirable

outcome or outcomes to decide what the best course of action is. They combine

their knowledge of the environment as well as their desires of how they want

the environment to be some time in the future to make their decisions.

• Utility-based agents - These agents use a “happiness” descriptor to decide how

good or bad a situation is. Utility allows for a non-binary way of deciding if one

state is more preferable than another by mapping the state onto a real number

or series of numbers that can then be compared for action determination.

All of these agent types can be extended into learning agents which can make

improvements on their behavior rules, goals, or utilities to better improve performance

on a specific metric.

A multi-agent system (MAS) is a system in which two or more agents interact

with one another and their environment to achieve cooperation, coordination, and

negotiation in their actions towards a goal or objective [52]. These agents may or

may not be working towards the same goal, and may in fact be working to subvert

the other’s objectives.

Some researchers have worked to develop standardizable taxonomies for describing

the MAS [7, 11, 50]. These have yet to become standards, but they allow for formal

definition of most multi-agent environments.

Dudek, et al., [11] describe their MAS by first identifying the problem statement

and the number of agents desired to complete the task. Problems range from those

which are traditionally multi-agent to those which may benefit from the use of multiple

agents (as opposed to one large or much more capable agent). They then define the

size of the agent collective, the values of communication range, topology, cost, and

reconfigurability (how dynamic the communication topology can be) relative to how

important they are to each other and solving the problem. Agents are defined by their

7

processing power and their uniformity of capability and function [11]. This allows for

a formal definition of agent collectives with respect to both the developer’s original

intent and the formal taxonomy.

Cao, et al., [7] describe an MAS based on the task to be undertaken and its

inherent needs. They then define the mechanisms of cooperation, to include the group

structure/hierarchy, potential resource conflicts, the origins of cooperation which will

facilitate cooperation among the agents, agent learning, and the geometric problems

that arise from the operation of agents in two and three dimensional environments.

The system is then described by its centralization: how centralized or decentralized

the agents and their decision mechanisms are, as well as the homogeneity or lack

thereof in the collection of agents (called differentiation).

Weiss [50] describes a MAS by first defining a communications protocol to facilitate

in agent coordination. This description of relies on the assigned abilities of each agent

in the system to participate in the communication. Agents can be basic in that they

only receive information, passive in that they only send and receive information,

active in that they send and receive information and also ask for information, and

peers in that they send and receive information, as well as receiving and responding to

queries for information. Weiss’ MAS taxonomy is unique in that the communications

protocol and syntax structure which allow for coordination and belief maintenance is

of the utmost importance in describing the system, and it is only after this is strongly

defined that the specific problem is considered.

There exists commonality between the above formalisms, but as can be seen, there

is no universally accepted standard for describing or solving a multi-agent problem.

All multi-agent systems allow for the completion of tasks that may not be achiev-

able by a single agent system. A single agent may not be physically capable of com-

pleting a task individually or it may not have the information necessary to complete

8

the task, therefore needing the information contained within other agents in the sys-

tem. Common multi-agent research includes communication [23], fault-tolerance [29],

and organization [42]. Multi-agent systems are commonly found in graphical appli-

cations such as video games and often applied to area defense like problems in which

a single physical entity is not enough to achieve the desired goal.

2.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a problem which is defined by a set of

variables which must meet certain requirements in order to be considered a proper

solution [41].

A CSP is formally defined as a set of variables:

{V1, V2, ..., Vn},

a set of constraints:

{C1, C2, ..., Cm},

and a set of domains of values for which each variable can take on:

{D11, D12, ..., D1x}, {D21, D22, ..., D2y}, ..., {Dn1, Dn2, ..., Dnz}.

The variable Va is of a non-null value in the domain Dai. Each constraint consists

of a subset of variables and constraints which mathematically define an allowable

combination for that subset. A state of the problem is defined by an assignment of

values to some or all of the variables

{Vi = vi, Vj = vj, ...}

9

and is considered legal if it does not violate any of the constraints. A solution to a

CSP is a complete assignment set for the variables that meets all constraints [41].

There can often be many legal solutions to a single CSP.

A common and popular puzzle is the Japanese game Sudoku [22], shown in Fig-

ure 1, in which a player is given a partially empty grid of numbers and required to

assign a numerical value between 0 and 9 to all of the empty spaces such that the

game’s constraints are satisfied. A standard game of Sudoku consists of a 9x9 board

with 9 3x3 subgrids. Each 3x3 subgrid must contain the numbers 0 through 9 with no

repetition. Along with filling the subgrids, each horizontal row and vertical column

in the full 9x9 board must contain the numbers 0 through 9 only once.

Figure 1. An incomplete Sudoku game (left) and its completed counterpart (right).
Aside from the standard game rules, the empty board provides additional starting
constraints in red which the remaining variable assignments must meet (shown in
black) [26].

As a CSP, a traditional Sudoku game would be defined as the variables

{E1, E2, ..., En}

10

representing each of the empty spaces on a board, and the constraint set

{S1, S2, ..., S9, R1, R2, ..., R9, C1, C2, ..., C9}

representing each of the 3x3 squares, the 1x9 rows, and the 9x1 columns on the board.

This Sudoku game could then be solved using one of the many CSP solving methods,

described in the next section.

A more traditional CSP is the “N-queens problem”, shown in Figure 2, in which

N chess queens are placed on an n× n chessboard in a way that no two queens can

attack each other, that is, each queen occupies its own individual row, column, and

diagonal. Defined as a CSP [47], the variable set is

{Q1, Q2, ..., QN}

with the problem constraints

{Qi 6= Qj , |Qi −Qj | 6= |i− j|}.

2.3 Methods for Solving Constraint Satisfaction Problems

A CSP is best solved using a local search method [41] in which only improvements

that exist a certain distance away (defined by the problem) from the current location

are considered. Common methods involve deterministic solvers for the search, either

with or without backtracking, forward checking, and minimum conflict search [41].

Search with backtracking involves assigning values to the variables one at a time,

keeping track of their legality within the problem constraints. When an illegal assign-

ment is made, the search backs up to the last known legal configuration and discards

11

Figure 2. One of the many unique solutions for the N-queens problem where N =
8 [39].

all possible solutions that could have been generated from that illegal assignment.

This type of search is a form of admissible brute force, which can be improved by us-

ing a heuristic to keep track of the least constrained value, and using it as an assigned

ordering [41].

Search with forward checking keeps track of the remaining legal values for each

of the variables, and terminates when a variable has no more legal values. This is

a form of inadmissable local constraint enforcement and does not provide any early

detection for illegal assignments. When an illegal assignment is detected, it becomes

necessary to revert to a previous state in which there remained legal assignments to

be made [41].

Minimum conflict search (min-conflicts) assigns random domain-consistent values

to each variable of a CSP. It then iteratively deconflicts the values to achieve legality

with the constraints by assigning each variable to the value that has the fewest con-

12

flicts with the constraints. The search ends when a maximum number of iterations

has been met, or a legal solution has been found [41].

Because of the local search nature of the problem, many population-based stochas-

tic search algorithms, such as an evolutionary algorithm (EA), can be used to solve

CSPs [13]. In using an EA to solve a CSP, the CSP must be described in a fashion

consistent with the requirements of an EA. Typically an individual in the evolutionary

algorithm’s population is the complete set of variable assignments. The EA’s fitness

functions are used in lieu of a set of constraints to determine the legality of a set

of variable assignments and the variable assignments themselves will be determined

with some random probability. This method for solving is inadmissable, but is often

faster than a deterministic search [13, 40].

2.4 Evolutionary Algorithms

The evolutionary algorithm (EA) concept works to include stochastic elements

from biological evolution in the development of an optimal solution. The EA optimizes

a solution by selecting an outcome from a population of possible outcomes which are

manipulated using traditional elements from biological evolution [8]. EAs function

around consecutive generations of solution sets and typically include the following

basic steps [14]:

• Population Generation - a set of possible solutions (the population) is needed

at the start of the algorithm. This population of solutions is created from a

seed, a predetermined set of values or information which is changed (mutated)

to create the population. This is also called “crossover”.

• Fitness Evaluation - of the current population, each solution candidate is weighed

and scored objectively to determine its fitness as a final solution.

13

• Selection - of the current population, the solutions with the strongest candidacy

for becoming a final solution are combined into a single solution with each

“parent” contributing at random to the “offspring”, and the offspring is used

as the seed for the next population generation.

• Crossover - the population members chosen from the selection stage are com-

bined in a user-defined way to generate parts of a new population.

• Mutation - the seed from the previous generation is altered, with large or small

changes performed at the programmer’s discretion to create a population of

potential solutions for the next generation.

• Termination - this is the condition under which the algorithm will discontinue

can either be an acceptable solution or a specified number of generations.

Mutation is also shown in Figure 3 with a binary string representing the genome

and a string representing the desired solution. The elements in red represent the

randomly selected variables to be mutated. There are three population members

that are equally close to the desired solution, so the first one found is used as the

seed for the next generation.

Each stage of this process, with the exception of the fitness evaluation and the

process termination, occurs with random probability and there is a chance for poor

solutions to propagate through the entire system and produce no useful result, there-

fore, it is the responsibility of the fitness evaluation and selections stages of the EA to

push for quality solutions. Fitness for a particular solution may either be compared

against a static known or wanted solution, or as is usually the case, compared against

an objective function [14]. A stochastic measure may be applied to the selection pro-

cess such that better solutions have a greater chance of being selected, but weaker

solutions also have a chance of moving on to the next generation.

14

Figure 3. A binary seed mutation for a generic EA.

Thomas Bäck defines each stage of the generic EA mathematically with the generic

EA defined as

EA = (I,Φ,ΩEA,Ψ,s,ι,µ,λ)

where I = Ax ×As is the population itself, and Ax, As are sets of variables and their

assignments, respectively. Φ : I → IR is a fitness function which assigns real values

to population members.

ΩEA = {ωθ1, ..., ωθz|ωθi : I
λ → Iλ} ∪ {ωθ0 : I

µ → Iλ}

is the set of probabilistic genetic operators ωθi, each of which is controlled by specific

parameters in the sets Θi ⊂ IR. The operator

sΘs : (I
λ ∪ Iµ+λ) → Iλ

defines how many population members are selected. This can change from λ to λ+µ

to µ, where µ, λ ∈ IN and µ = λ is allowed. Θs may be an additional selection

operator, µ is the number of parents, λ denotes the number of offspring in each

15

generation, ι : Iµ → {true, false} is the termination criterion for the algorithm,

and Ψ : Iµ → Iµ is the complete process of transforming a population P into the

next by applying the genetic operators Ψ = s ◦ ωΘi1 ◦ ... ◦ ωΘij ◦ ωΘ0 and Ψ(P) =

sΘs(Q ∪ ωΘi1(...(ωΘij(ωΘ0(P)))...)) where {i1, ...ij} ⊆ {1, ...z} and Q ∈ {∅, P} [4].

2.5 Multi-Objective Solvers

Multi-objective solving is the process of optimizing multiple distinct and poten-

tially conflicting goals [8]. For example, a group of robots has to defend an area and

maintain network communication. In order to properly defend the area, the robots

must spread out far enough to cover the space, but in doing so may move out of

communication range with the other robots. In order to regain communication, the

robots must move closer together and possibly defend less area. Multi-objective opti-

mization is concerned with maximizing goals in the way that least impacts the other

desired goals.

There are multiple methods for representing a multi-objective problem for solving

such as

• Aggregation - This is the simplest method for solving multiple objective prob-

lems. It involves combining each of the goals into single or multiple goal func-

tions, with each sub-goal weighted according to its desired impact on the fi-

nal solution. These weights can be static or dynamic between optimization

runs [24, 36].

• Population-based - The population-based approach includes elements from bi-

ology such as mutation, combination, and selection, in which there exists a

probability that two solutions from a given population of solutions will be com-

bined, a solution will be altered randomly, or a lower ranked solution will be

16

chosen over a higher one. This can allow for multiple solutions to be combined

in a way that improves the overall solution [16].

Multi-objective solving research is currently in the realm of the population-based

approach, with single and multiple aggregation popularly seen as inferior and used as

a crude performance comparison.

2.5.1 Non-Denominated Genetic Sorting Algorithm II (NSGA-II).

A multi-objective evolutionary algorithm (MOEA) is an evolutionary algorithm

in which the fitness function (Φ) and evaluation is geared towards the requirements

of two or more (possibly independent) goals, making Φ : I → R
k where k ≥ 2 [8].

One of the first MOEAs used the number of dominating elements to rank pop-

ulation fitness [8]. This was later expanded into the non-dominated sorting genetic

algorithm (NSGA) which used multiple layers of classification to describe each pop-

ulation element. This allowed for a better search of the Pareto front regions and

allowed the population to converge near them [10]. NSGA, while being very good at

convergence, suffered from three main weaknesses:

1. O(Mλ3) complexity, where M is the number of objectives and λ is the popula-

tion size.

2. Non-elitism in which weak solutions are given the same chance to survive to the

next generation as their strong counterparts - no survival of the fittest.

3. The need to specify a sharing parameter to guarantee the diversity of solutions

in the next generation.

These weaknesses were all addressed in NSGA-II. Pseudocode for NGSA-II is

shown in Algorithm 1 [8]. NSGA-II has a complexity of O(Mλ2) due to its faster non-

dominated sorting algorithm, uses an elitist approach in which the more fit solutions

17

are more likely to be used as seeds for the next generation, and defines a crowding

distance in its selection operation to keep the population diverse [10]. NSGA-II is

currently the standard for comparison in most MOEAs [8].

Algorithm 1 NSGA-II
from Evolutionary Algorithms for Solving Multi-Objective Problems

1: procedure NSGA-II (λ′, g, fk(xk)) ⊲ λ
′ members evolved g generations to solve

fk(x)
2: Initialize Population
3: Generate random population - size
4: Evaluate Objective Values
5: Assign Rank (level) Based on Pareto Dominance - sort
6: Generate Child Population
7: Binary Tournament Selection
8: Recombination and Mutation
9: for i = 1 to g do
10: for each Parent and Child in Population do
11: Assign Rank (level) based on Pareto - sort
12: Generate sets of nondominated vectors along PFknown

13: Loop (inside) by adding solutions to next generation starting from the first
front until N ′ individuals found determine crowding distance between points
on each front

14: end for
15: Select points (elitist) on the lower front (with lower rank) and are outside a

crowding distance
16: Create next generation
17: Binary Tournament Selection
18: Recombination and Mutation
19: end for
20: end procedure

2.5.2 Pareto Optimality.

Pareto optimality plays a big part in multi-objective solvers, especially in the

ranking of EA-based solutions as it is usually how solutions are ranked against each

other. Pareto optimality is an economics and game theory concept in which distinct

goals can be optimized in a multiple objective environment. A Pareto optimal solution

18

is one in which that particular solution can no longer be improved without impacting

the effects of any of the other goals’ solution [8].

It is said that one element strongly Pareto dominates another element if it is better

in all of its desired characteristics. An element is non-dominating of another element

if it is better in one aspect but not another. The optimal set of points are all those

which are non-dominated by each other; they form the Pareto frontier which is the

series of points in which the definition of “better” or “stronger” or “more correct”

becomes ambiguous.

Formally, Pareto terminology is defined as [8]

• Pareto Optimality: A solution x ∈ Ω is said to be Pareto Optimal with respect

to Ω if and only if there is no x′ ∈ Ω for which v = F (x′) = (f1(x
′), ..., fk(x

′))

dominates u = F (x) = (f1(x), ..., fk(x)).

• Pareto Dominance: A vector u = (ui, ..., uk) is said to dominate another vector

v = (vi, ..., vk) (denoted by u � v if and only if u us partially less than v, i.e.

∀i ∈ {1, ..., k}, ui ≤ vi ∧ ∃i ∈ {1, ..., k} : ui < vi.

• Pareto Optimal Set: For a given multiobjective problem, F (x), the Pareto

Optimal Set, P∗, is defined as: P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′) � F (x)}.

• Pareto Front: for a given multiobjective problem, F (x), and Pareto Optimal

Set, P∗, the Pareto Front PF∗, is defined as: PF∗ := {u = F (x) | x ∈ P∗ }.

As shown in Figure 4, the optimal solutions (in red) lie along a boundary (the

line) in which no one point dominates another, but all the blue points are dominated

by one or more point on the frontier. Points A and B do not dominate each other,

but they both dominate point C. Points A and B are considered more optimal than

point C for the solution of competing goals 1 and 2.

19

Figure 4. An example of the Pareto frontier for a minimization problem.

The Pareto front can be used to prune away inefficient or unwanted goals to trim

the solution space in a way that makes the decision of the proper course of action

easier for the agent.

2.5.3 jMetal and JNSGA2.

There currently exist two development libraries for implementing the NSGA-II

algorithm in the Java programming language, jMetal [12] and JNSGA2 [33], both of

which are open-source under the GNU General Public Licence Agreement.

JNSGA2 is a highly abstract implementation of the NSGA-II algorithm that works

to minimize objectives. The developer must create the genetic representation for their

individual problem as well as implement the interface for each objective. Mutation

and crossover probabilities, desired population size, number of desired generations,

20

fitness functions, and all other necessary NSGA-II parameters must be implemented

by the developer.

jMetal is a development framework geared towards the study of metaheuristics for

multi-objective problems. It provides a rich and robust set of object classes which im-

plement 13 different evolutionary algorithms (including NSGA-II). It provides prob-

lem families as well as classical and constrained problem examples in an effort to

make jMetal as easy-to-use as possible. It allows for explicit variable representation

in both real, binary, integer, and binary-coded real numbers.

2.6 Multi-Robot Tasking

In a multi-agent environment, trust implementations (described in a following sec-

tion) can prevent subversion by enemies, as well as allow for proper opponent mod-

eling. This becomes especially important in the modern environment where com-

munication can be tampered with, and agents themselves can be compromised by

non-obvious means.

Much research has been put forward in the realm of group-robot tasking in a

real-world environment [20, 37]. As with any multiple component systems, there are

multiple categories for multi-robot tasking in an environment:

1. No distribution - the robots themselves receive all their tasking and task de-

conflicting from a lead robot or central base station.

2. Partially distributed - the robots are responsible for some or all of the task

de-confliction, but must communicate that amongst each other.

3. Completely distributed - the robots can coordinate without direct communica-

tion with one another, and sense the environment, the other robots, and act

accordingly.

21

Most of the current research is in the first two categories, with the existence of

a base station to communicate mission critical information to the robots in the field

or keep their actions properly coordinated [17, 30, 46]. This is less desirable for this

particular problem domain, as trusting the tasker or maintaining communications

with the tasker is part of the larger challenge to be taken on.

Some work, however, has been done in more distributed multi-robot tasking, in-

cluding some UAV research in which the UAVs coordinate amongst themselves with

limited communication to properly identify a target and gather information [35]. This

has also been done on the ground with area defense robots. The roaming robots can

decide how to handle a security threat, while maintaining perimeter control, but they

also require communication among each other to respond to a threat and a base sta-

tion to designate their specific patrolling area [20]. Area patrol when communication

is very limited is as close to a completely distributed solution as current technol-

ogy will allow. It has been shown that even when communication is only allowed in

specific locations at specific times, robots can still coordinate themselves to gather

the most information about their assigned environment [34]. This, however, assumes

perfect trust between the agents at all times, and does not consider a situation in

which systems have been compromised and agents are intentionally distributing false

information to the other agents in the system.

Some tasking analysis has taken place, and at least one formal taxonomy has been

developed [17]. This taxonomy assumes that each agent is capable of estimating its

own fitness for every task it can perform and begins with defining the utility metrics

(U) for task assignment. If an agent A can achieve a task T with a quality QAT = 20

at cost CAT = 10, and an agent B can achieve the same task with quality QBT = 15

at cost CBT = 5, then there should be no preference when searching for efficient

22

agent assignments because

UT = QT − CT

and

UAT = 20− 10 = 10 = 15− 5 = UBT [17].

This taxonomy then moves to combinatorial optimization and the need to select an

algorithm to properly make assignments. It covers subset maximization, in which the

most tasks are performed at once, as well as the greedy algorithm for task assignment,

in which the least or most expensive tasks are assigned first. Formal measurement

metrics are defined for this taxonomy [17], and they are

• single-task agents (ST) versus multi-task agents (MT) which define the differ-

ences between agents that can only perform one task at a time and agents that

can perform multiple tasks at a time.

• single-agent tasks (SR) versus multi-agent tasks (MR) which define tasks as

requiring only a single agent or multiple agents to achieve.

• instantaneous assignment (IA) versus time-extended assignment (TA) which

describes an assignment system in which no future planning is considered or

one in which future assignments are taken into account.

2.7 Wireless Communication

Strongly coordinated multi-agent activity often depends on reliable communica-

tion between the agents in the environment, and it can often be the case that manipu-

lation and observation of the environment is not sufficient and explicit communication

methods are needed.

A mobile ad-hoc network (MANET) is a wireless communication network in which

23

each node of the network acts as both a node and a router; that is, each node in the

network can both be the source/destination of information, as well as a forwarding

path for other information traversing the network. This allows for flexibility that a

fixed-router network does not have in that nodes can enter and leave the network at

will and the network mesh can still be maintained.

There exist some important axioms of MANET research that must be maintained

throughout development [28]:

• The world may not be flat. It is very important when working in a 3-space

environment to remember and model proper distance as well as any objects and

their radio-blocking properties that may be between nodes.

• A radio’s transmission area is not necessarily circular. Objects in the envi-

ronment can block radio signals, as well as other electromagnetic or natural

interference.

• All radios do not have equal range. A low-power handheld radio will not have

the same communications properties as a large television or radio tower.

• Symmetry in communication may not always exist. It is not necessarily true that

a node which can receive information also has the ability to return information

to that sender.

• Perfect communication is not guaranteed. It must be remembered that if two

nodes are fixed, they may have some stochastic communication ability in that

messages come through perfectly, garbled, or not at all with some changing

probability.

• Signal strength is not always a function of distance. The objects in between

the nodes combine with any electromagnetic disturbances in the environment

to alter the signal strength and transmission distance of a particular node.

24

These fundamentals exist in all wireless communication research, but can and are

often abstracted away. The particular researcher can also state that their particular

hardware or setup corrects for or eliminates these problems. Software packages such

as JiST/SWANS [2], NS2 [1], and GloMoSim [53] are often used to precisely model

these physical network constraints in simulation, but were not used for this research

due to their extremely precise nature. It is not necessary to describe intricate network

details, such as network addressing, handshaking protocols, and packet collision.

2.8 Wireless Sensor Networks

This research is directed towards artificial intelligence and agent-based systems,

but it is also akin to the placement of wireless sensor networks in an environment, of

which much research has been done.

A wireless sensor network is a set of spatially distributed sensors which are used

to monitor physical or environmental conditions [27]. These networks can be used

for optical sensing, weather sensing equipment, intrusion detection grids, and even

agriculture systems [15]. Most of the research done in the setup of wireless sensor

networks has been towards their deployment in an environment where intrusion de-

tection is the primary concern [?, 25, 55]. These studies vary in their description of

the environment. Some consider weather and environmental conditions as well as the

time to detect a threat [?], while others focus on the lifetime of the network relative

to its performance [25]. Some simulations even allow for sensor networks that have a

limite capacity to move within their environment [55].

2.9 Markov Decision Processes

There are countless ways to describe an environment and a decision making prob-

lem, but the most intuitive is the Markov decision process (MDP), in which all deci-

25

sions are conditionally independent of all past states.

The Markov decision process [6] is a method for modeling, decision making, and

optimizing single-agent domains in fully observable environments where there exists

no uncertainty about state.

An MDP is defined by the tuple (S,A,T ,R) where

• S is a finite set of environmental states (S ∈ s).

• A is a finite set of actions (A ∈ a) that can be taken.

• T is the set of transition functions S × A → S ′ that details the probability of

an action a changing a current state s to another state s′.

• R is the expected reward that an agent receives from taking an action a in a

state s and reaching a another state s′.

The solution to an MDP is a policy (Π(s)) which defines the action at every

possible state that will achieve the greatest reward.

Some of the limitations of the MDP are eliminated by the partially observable

Markov decision process (POMDP) [18]. This extension of the MDP is defined by

the tuple (S,A, T,Ω,O, R) where S, A, T , and R are unchanged from the standard

MDP and

• ω ∈ Ω is a finite set of observations that an agent can make within its environ-

ment.

• o ∈ O is the set of observation functions S × A → Π(Ω) which defines the

probabilities of new observations o given that an agent took an action a to

enter a new state s′.

The decentralized partially observable Markov decision process (DEC-POMDP) [43]

extends the POMDP to a multi-agent environment.

26

A DEC-POMDP is defined by the tuple (I, S, A, T, R,Ω, O,H) where S, A, T , R,

Ω, and O are amended from the POMDP to include the existence and models of the

other agents in the system and

• I is the finite set of agents in the system.

• H is a value that may or may not exist, which represents the positive time

horizon for calculations.

The DEC-POMDP has a limitation that it does not allow agents to interact with

the environment, that is, the set of environmental states cannot change. The inter-

active partially observable Markov decision process (I-POMDP) [18, 44] allows any

of the agents in the system to interact with the environment and modify the current

state and is defined by the tuple (ISi, A, Ti, Ri,Ωi, Oi) for each agent i in the envi-

ronment and is more analogous to a series of POMDPs for each agent in the system

and

• ISi is the finite set of interactive states S ×Mj that the agent can be in with

S as the set of states, and Mj is the set of models of agent j. This includes

the changes made to the environment by the other agents in the system in all

possible histories hj.

• A is the set of joint actions of all agents, Ai × Aj.

• Ti is the transition model S×A×S ′ that defines the probability that an agents

action a will change the state from s to s′.

• R is the expected reward function ISi × A → R in which agent i expects to

receive r by taking action a into state s.

• Ωi is the set of observations that an agent can make.

27

• O is the probability function S × A × Ωi which defines the probability of an

agent taking action a inside state s and producing observations Ω.

An unbounded I-POMDP is undecidable [43], meaning it is too complex to be ad-

missible, and an optimal POMDP is NP-complete. There are many methods to sim-

plify and estimate the computations of the POMDP, DEC-POMDP, and I-POMDP

that will not be covered in this work.

2.10 Solving an MDP

Solving a Markov decision process is a computationally complex task as it suffers

from dimensional limitations in which the space of all possible solutions is far too

large to perform a traditional search through. This manifests itself in a computer

simulation as a lack of memory or processing power to effectively solve the problem.

With this, there currently exist techniques for solving MDPs.

• Divide-and-conquer - This computer science approach of breaking a complex

task into smaller more manageable ones has been shown useful in solving MDPs.

Methods for representing the decision policies for divide-and-conquer include al-

gebraic decision diagrams [49, 31], task graphing, and finite state machines [32].

Divide-and-conquer is a form of dynamic programming, which can also be used

to maximize policy or state value to their convergence in multiple iterations.

• Linear programming - The MDP decision space is represented as a mathematical

function to be minimized or maximized accordingly. This method requires the

state space to be represented as a series of variables, and will work for both

discrete and continuous states [21]. This is often the most practical solution

type, but can produce an inadmissible solution.

• Prioritized sweeping - The MDP is solved by working backwards from goal

28

states, placing priority on state variables which change nontrivially from one

state back to its previous state [48].

• Equivalence folding - This is a more traditional tree-based search solution in

which states that share the same action at the same time are folded together

into one state, reducing the search time from that point forward [19].

• Envelope-based - Solving an MDP using an envelope-based solution is tradition-

ally done where the state space is extremely restrictive. That restricted state

space, called the envelope, is used to expand an initial policy, extend the state

space, and calculate a new policy [9]. There is no guarantee that an improved

policy will appear without the need to include the entire state space.

• Monte Carlo - MDP solutions can be approximated by using a Monte Carlo

approximation to model the next state based on the previous states. By keeping

track of the transitions and rewards, estimations can be made to make educated

guesses at the next states and their rewards.

Along with optimal solutions, there are many ways to approximate a solution

to an MDP, which can often be much faster and get “close enough” to an optimal

solution. Most popular solutions involve the discretization of continuous states, fixing

the time horizon, prioritization, and approximating over the space with a granularity

to sufficiently reduce the number of states.

2.11 Trust

Formally, trust is defined as “a charge or duty imposed in faith or confidence or

as a condition of some relationship” and “something committed or entrusted to one

to be used or cared for in the interest of another” [3]. This can easily be extended to

an autonomous system of agents. Working in a multi-agent environment, it is easy

29

to assume that all of the other agents in the system are working to achieve the same

goals as you and that none of them would subvert your attempts at success. As in

real life, this is not always the case. Opponents in the system can be openly against

your goals or operate more covertly in a way to deceive you of their real intentions.

It is important to model the other agents in the system and decide if they are helping

or hurting you with their actions.

There are many ways to determine trust in systems, including but not limited to

• Experience-based trust [5] - depends on the agent’s past experiences with each

other agent to determine its current trust rating.

• Reinforcement learning with trust [41] - works similarly to other reinforcement

learning models. Agents receive reward based on how the other agents in the

system perform. Trust and reward is gained if an agent expected another agent

to do something, and it was indeed done. Trust and reward are lost when the

agent performs differently than expected.

• Trust vectors [38] - allow for different levels of trust in which an agent may be

trustworthy to do one thing, but untrustworthy to do another.

• The Trust-Based I-POMDP [44] - allows for agents to model both deceitful and

unknown agent behaviors, and decide in a partially observable and stochastic

environment what the best course of action is. Trust is gained through coop-

eration and proper modeling of the other agents and lost through betrayal and

poor estimation of the other agent’s actions.

2.12 Summary

This research is an amalgamation of many research areas, as such, an under-

standing of many different elements of artificial intelligence is required. Network

30

communication must be modeled realistically, as well agent trust. The environment

the agents within it must be modeled by some form of MDP to allow an algorithm-

based solution, and the multiple objectives must be taken into consideration. Once a

solution is produced, it must be evaluated against the optimal solution or the current

best solution, to determine its worthiness as a true solution.

Optimizing anything requires an understanding of not only the environment and

problem to be optimized, but also the actual means of optimization. In turn, multi-

objective optimization requires the understanding of multiple environments, prob-

lems, and optimization methods.

31

III. Area Defense With the Non-Dominated Sorting Genetic

Algorithm II

To automate an area defense system, the systems task agents to perform a set of

jobs. Each job is a smaller component of the larger goal of defending an area. These

smaller components include area exploration for proper defense and communications

maintenance for deconfliction of tasks and proper trust maintenance.

This chapter describes a task assignment GA to task agents to perform area

exploration and communications maintenance as a constraint satisfaction problem.

The algorithm uses the stochastic nature of NSGA-II to position agents in ways that

meet the prescribed fitness functions. The solution is an organization of agents in

2-space that provides for the best exploration and communication at any one time. It

focuses on a proof of concept to keep overhead down and achieve the required goals.

The actual planning of the agents’ actions, how an agent gets from point A to point

B, is not considered, only how the agent’s final position effects the system as a whole.

The term “agent” will be used to describe a component of this system, rather than

as an actor with percepts and actuators as described in Chapter 2. Only the Behavior-

based simulation uses true agents, all other simulations use the term agent to refer

to the part of the simulation that is not the environment, a simulation characteristic,

and does not remain static.

3.1 Framework Development

A true area defense system must operate in physical space, taking into effect all

three physical dimensions. Agents in the system must make decisions about where to

move, what to believe based on their percepts of the environment and other agents,

and how to act based on those beliefs. Any of these decisions can be broken down into

32

smaller subsystems, which rely on specific protocols; exploration and movement are

governed by actuator controls and state machines, communication links are facilitated

by physical hardware and software protocols. Because this is a concept demonstration,

most of these fine details are abstracted away to only the description of the effect in

order to maintain a reasonable problem space and facilitate generalities based on two

important aspects of these systems.

The following sections describe the limits of the MDP-based models and why they

were not chosen to solve this problem. It also describes the CSP-based solution used

to solve this problem, as well as the formulation of the CSP for solving with NSGA-II,

including gene structure and fitness functions.

3.2 Limits of MDPs

One of the greatest limitations of any MDP-based model is the inability to describe

multiple objectives in the reward functions. A model can include multiple objectives,

for instance a reward for reaching a location on the world map which has not been

explored recently, as well as a reward for linking up with a large number of agents,

but this does not achieve a true multi-objective solver. For each state/action pair, the

action with the single greatest reward will be chosen (often called the greedy case)

and the existence of multiple objectives is never considered. An agent considering an

action for time step ti could consider an action in support of objective A as the best

for that time step, and in the time step immediately following ti+1 consider an action

in support of objective B as the best. Depending on the nature of the objectives, this

could result in an agent policy which moves back and forth between two states ad

infinitum.

Artificially biasing the reward values results in the same greedy policy. If action

ai results in a reward of 5 for objective A and a reward of 9 for objective B, and an

33

action aj results in a reward of 10 for objective A and a reward of 4 for objective B,

any weighting of the rewards, be it 50%-50%, 10%-90%, will always result in only one

objective considered. In this situation, it becomes necessary solve the problem away

from the normal MDP framework, utilizing a CSP to solve a multi-objective problem.

3.2.1 Domain and Environment.

A true area defense system needs to function in all three physical dimensions,

but simulating this physical space is very computationally intensive. This section

discusses the multi-agent simulation developed, and its key components.

Depending on the complexity of the simulation, from any one point in 3-space

there are an infinite number of directions and distances in which an agent can move.

Typically this is reduced to a more realistic approximation by assuming a lack of

flight, or an inability for the agent to move in a direction perpendicular to the current

plane. For this simulation, the domain is abstracted down to a two-dimensional grid

world, in which agents occupy an X-Y Cartesian location on the grid. This allows

the agents to use Chebyshev distance [54] to move in the grid world. Chebyshev

distance allows for movement consistent with a two-dimensional grid as well as ease

of distance calculation in that it forces distances to remain whole numbers, and be

representative of the number of movements one location is from another. Rather

than using the traditional distance formula, the number of grid cells separating two

locations is used. This grid world can be of arbitrary size and shape if so desired.

The grid world size is a parameter in testing.

Each agent has a specific observation and communication radius (r) associated

with it. An agent in location (Xa, Ya) can observe any location (Xb, Yb) if and only if

√

(Xa −Xb)2 + (Ya − Yb)2 ≤ radius.

34

This observation radius is the simulated equivalent of the range of a local sensor array,

and allows the agent to know with a probability what is within its observation range.

The communication radius represents its physical counterpart. This is the range

at which agents on the grid can successfully send messages to one another. This model

for communication takes into account the necessary aspects of wireless network re-

search [28], but abstracts away any networking protocols at high or low level that

would bog down simulation. Messages can either be passed, or they cannot. Outside

this communication radius, messages cannot be passed, but inside, there is certainty

that information is passed with success. The observation radius and communication

radius can be one in the same, if the designer so desires. Separating the observation

radius and communication radius will alter the simulation, and likely produce a sit-

uation in which the agents move between radii, maximizing their communication at

one moment, and maximizing their observed space at the next.

The domain in test contains no walls, but if they were present, they could be made

to have an effect on the communication and observation radii at the developer’s

discretion. These effects would follow the tenets of wireless network research [28]

and would be implemented by decreasing observation distance or communication

distance across a wall. Again, these two modifiers could be separately defined between

observation and communication.

The agents themselves only maintain two percepts. The first is their observed

space, represented in the grid world by their observation radius. The second is a list

of neighbors and connected agents. The list of neighbors is the identifying number

of all agents that are within the communication radius of that specific agent, and

the list of connected agents is the compiled list of neighbors’ neighbors. If an agent

A is connected to agent B, and agent B is connected to agent C, then regardless of

agent A’s neighbor status with agent C, it is connected. This is determined using a

35

depth-first search.

The tenets of wireless research, as discussed in the previous chapter, are applied

(or abstracted away) in this research in the following ways:

• The world may not be flat. In this case, a two-dimensional environment, it is

flat.

• A radio’s transmission area is not necessarily circular. This research assumes

transmission area is indeed circular, to allow

• All radios do not have equal range. All of these simulations assume homogeneous

agent capabilities. This can easily be modified to suit another researcher’s needs.

• Symmetry in communication may not always exist. This is similar to the pre-

vious point.

• Perfect communication is not guaranteed. Since this research focuses on estab-

lishing a link, not the error correction or quality associated with it, then it can

be assumed that communication is perfect if it exists at all.

• Signal strength is not always a function of distance. For this set of simula-

tions, signal strength is completely a function of distance. This keeps the state

description simple and still capture useful information.

3.2.2 The Constraint Satisfaction Problem.

The problem being solved is the best distribution of the robots in the domain that

optimizes the two constraints of area observation and communications maintenance

across the agents.

Defining a grid world and state representation within the bounds of a CSP is a

matter of defining the rules for the grid world and agent locations themselves. These

36

constraints are both a function of the environment, as well as the fitness functions

associated with the state (population individual).

This type of problem domain defined as a CSP has very specific constraints asso-

ciated with the grid-world itself:

• Agents cannot occupy or observe space outside the grid world. Assuming a

square world: ∀a : (Xa, Ya) < size(world)AND(Xa, Ya) > −1 where X and Y

are components of Cartesian coordinates.

• Two agents cannot occupy the same X-Y coordinate. ∀a, b : Xa 6= XbANDYa 6=

Yb where X and Y are components of Cartesian coordinates.

In the specific CSP definitions established in [41], V (n) represents a set of n X-Y

Cartesian coordinate pairs, one for each of the n agents; this is defined as:

{(x1, y1), (x2, y2), ..., (xn, yn)}.

The constraint set C is a combination of the above constraints:

∀a : Xa, Ya < size(world) ∩Xa, Ya > −1

and

∀a, b : Xa 6= Xb ∩ Ya 6= Yb

as well as the constraints defined in the Sections 3.2.5- 3.2.8 using genetic fitness

functions.

The domain D for each of these variable pairs is a Cartesian coordinate in which:

∀x, y : x, y ∈ Z+.

37

The base constraints and domain above simply provide for proper indexing into

the grid world. To be valid, grid assignments must be whole numbers, non-negative

numbers, and no larger than the size of the grid. Also, two agents cannot share the

same grid assignment.

3.2.3 Using NSGA-II.

In using a genetic or evolutionary algorithm to solve a CSP, the CSP must be

presented to the algorithm in a way that is consistent with the algorithm’s design. In

the case of NSGA-II [10], and the software package used, JNSGA2 [33], an individual

member of the population is described as the grid coordinate assignments for each

of the agents. Fitness takes on several forms, as discussed below, but the JNSGA2

package works in minimization, meaning the a fitness value closer to 0 is better, with

negative fitness values not allowed. Each population member has an observation value

and a communication value as discussed above. These values are assigned uniformly

at the simulation start, and remain static across generations.

In an attempt to diversify the way exploration is calculated, three slightly dif-

ferent exploration fitness functions were developed and tested against a common

communication fitness function. These three exploration fitness functions are called

“MaxDistance”, “MaxArea”, and “Tiled” respectively, and are described later in this

chapter.

3.2.4 Gene Structure.

This particular problem establishes a solution as X and Y coordinate values for

each agent in the system. An individual in the population is defined as the 2-space

Cartesian coordinates of a set number of agents n,

{(x1, y1), (x2, y2), ..., (xn, yn)}.

38

Gene mutation changes the value of either the X-coordinate, the Y-coordinate, or

both. Gene crossover exchanges the coordinates of an agent from one gene with the

coordinates of the same agent from another gene with some probability. Mutation of

gene

{(xa1, ya1), (xa2, ya2)}

could result in

{(xa3, ya3), (xa4, ya4)}

where

P (xa1 = xa3) <= mutationProb

P (xa2 = xa4) <= mutationProb

P (ya1 = ya3) <= mutationProb

P (ya2 = ya4) <= mutationProb

Crossover of genes

{(xa1, ya1), (xa2, ya2)}

{(xb1, yb1), (xb2, yb2)}

would result in the new genes

{(xb1, yb1), (xa2, ya2)}

{(xa1, ya1), (xb2, yb2)}

where

P (V ariableSwap) <= crossoverProb.

39

All gene mutation and crossover functions use their respective NSGA-II setting for

probability and Java’s Random class, which generates random numbers on a uniform

distribution.

As long as the X and Y values meet the constraints above, that is, they fall within

the domain of the grid world, then they are considered legal solutions to the CSP.

Adding additional constraints is done in the form of fitness functions for the NSGA-II

algorithm.

3.2.5 Distance Maximization.

For this type of area defense problem, it becomes a natural solution to place the

agents as far away from each other as is possible to allow for the least possible overlap

in searched space. The first exploration function simulates this by creating the largest

average distance between all agents.

Because JSNGA2 works to minimize the solution, the average distance returned

is subtracted from the greatest possible average distance the agents can be from each

other, that is, with one agent being in a corner, and the other agent being in the

opposing corner. If grid world of 1000x1000 is assumed, so the returned average

value is subtracted from 1000 ∗
√
2. This constraint is described in detail below,

where P and Q represent agents in the environment.

AvgDist = ∀P,Q in a Σ(distance(P,Q))/A2

Fit1 = 1000 ∗
√
2−AvgDist

3.2.6 Covered Area Maximization.

Another way to simulate area exploration is to keep track of the amount of area

covered by all agents at any one time. In an area defense problem such as this,

keeping track of the amount of area each agent can cover is similar to a human patrol

40

responsible for protecting a building or a watchtower responsible for protecting as far

out in all directions as its observation will allow.

The second exploration function tries to minimize the number of unobserved lo-

cations on the grid world. The agent’s radius is used to calculate the number of

locations on the grid that can be observed by each agent, this is then totaled and

returned as a percentage of the total space. A space that is completely observed

returns a value of 0, and a space that is completely unobserved returns a value of 1.

ObservedArea = Σ(2π ∗ rA)− overlapingArea

F it2 = 1− (ObservedArea/TotalArea)

The most fit solution is one in which no agents share any observed space, that is,

each space that is observed, is observed by only one agent.

3.2.7 Tiled Area Coverage.

In a human area defense exercise, it is common for a unit to be assigned a specific

section of the environment to control or maintain presence over. This section may be

larger than the observation area of the unit. This could easily occur in an automated

defense system, and is simulated by a tiled environment.

The third exploration function uses a tiled space to spread the agents around.

The grid world is divided into uniform tiles, one tile for each agent. This is done

by dividing the space into n evenly sized rectangles. The position of the agent then

determines if a tile is explored or covered. In a 100x100 grid world with 4 agents, each

agent is responsible for a 50x50 square of the grid. The agent may not necessarily be

able to observe the entire grid section, but just as a human responsible for patrolling

a space, the agent itself could then decide how best to patrol its assigned area.

Divide into size(a) tiles

41

AvgDist = ∀P in a determine which tile P is in and mark covered

Coverage = Σ(CoveredT iles)

Fit3 = size(a)− Coverage

The number of uncovered tiles is returned as the fitness, with a fitness of 0 rep-

resenting the ideal solution where all tiles have an agent covering them, and A rep-

resenting a solution in which no tile has an agent in it. A fitness of A is impossible

within the constraints of the problem, but does accurately capture an absolute worst

case scenario. The worst case scenario within the bounds of the CSP would be A−1,

in which all agents are grouped within a single tile.

The shapes and sizes of the tiles can be chosen by the researcher, but for this

research, tiles are evenly sized rectangular pieces of the grid world. These tiles are

generated by dividing the grid evenly in half vertically, and then dividing those halves

horizontally to achieve the desired number of tiles.

3.2.8 Connectivity Fitness.

The fitness for the connectivity objective uses a set connectivity radius to deter-

mine which agents form a MANET. The radius r is an abstraction of the transmission

distance of wireless hardware, with any agent inside the radius considered connected,

and any agent outside the radius considered unconnected. Neighbors of neighbors are

considered connected, forming the MANET. The fitness of an gene is returned as the

number of independent networks, that is, the number of distinct groups of agents. For

a problem with A number of agents, a solution in which all agents can communicate

with all other agents returns the value 1, and a solution in which no agents have any

neighbors returns the value a.

For a group of n agents, the least fit solution would return n, representative of

no connections between any agents, or n distinct network clusters. The most fit

42

Algorithm 2 Connection Fitness

1: procedure Calculate Connection Fitness
2: Create DNi, list of direct neighbors for each agent i
3: for each agent i do
4: add i to DNi

5: for each agent j do
6: if distance(i, j) ≤ r then
7: ∪(DNi, DNj)
8: end if
9: end for
10: end for
11: for j < A2 do
12: for i < A do
13: for each DNk do
14: if DNk contains i then
15: ∪(DNk, DNi)
16: end if
17: end for
18: end for
19: end for
20: Remove duplicates from DN
21: Return size(DN)
22: end procedure

solution is always 1, which represents a single network cluster, in which every agent is

connected to the network, and can communicate with every other agent via a direct

link, or a series of connected neighbors.

3.3 Agent Behaviors

As a comparison against a simple baseline algorithm, a reflex agent is developed

in which agents move in 2-space in random directions looking for a fixed gateway,

an immobile agent which acts as the root for a network tree. The agent action is

to select a random direction and move in it until a world boundary is reached or a

link is observed. If a world boundary is reached, a new random direction is chosen.

If a link is observed, the agent’s reward goes to 1 and the agent stops moving. The

43

agent then observes the neighbors it can connect with and if a cycle is detected, using

a depth-first search, its reward goes to 0 and the agent begins to move again. The

ultimate goal is to reduce the redundancy of the overall network, and spread the

agents across the largest space possible while still maintaining a network and a link

with the gateway. The agents should spread themselves out as far as they can and

still maintain a connection to the gateway. Convergence is defined as every agent

in the system achieving a reward of 1. When convergence is reached, the average

distance between the agents is recorded.

3.3.1 The Dudek Taxonomy.

The above domain and environment description can be compared directly with the

taxonomy laid out by Dudek, et al. [11]. For this problem, SIZE-LIM is appropriate,

as the number of agents is definitely more than 0, and likely more than 2. SIZE-LIM

also allows the number of agents to scale relative to the size of the environment. Next,

COM-NEAR is used to describe the communications capabilities of the agents, in that

they can only communicate with agents “that are sufficiently nearby”. TOP-ADD

can be used to describe the communications protocol used by the agents which allows

them to communicate directly with another agent without the need for a hierarchy

or broadcasting to all agents within range. This particular element can be modified

at the user’s request, and does not have an effect on this simulation. BAND-INF

describes the free cost of communication in this simulation. Because networking

protocols and overhead are ignored completely, communication is effectively free.

Communication in more accurate simulation, or the applied physical system would

have a cost associated with it. ARR-DYN describes the dynamic nature of the network

topology. As this is a MANET-type system, the physical layout of the network nodes

(the agents) can be completely different from one time step to the next. PROC-TME

44

describes the agents’ computation models as Turing Machine Equivalents. This is

again not important for this simulation, but would be used in the physical construct.

COMP-IDENT describes the individual agents in the system as being identical. This

is an abstraction specifically for this simulation, as a true physical design could be

made up of many different robots with differing computational and problem-solving

capabilities; the agent that acts as a mobile network repeater will likely have different

capabilities than an agent that acts as an attack and interdiction drone.

3.4 Summary

When utilizing a genetic algorithm to describe a constraint satisfaction problem,

it becomes necessary to define the CSP in a way that can be properly utilized by the

GA. In this case, the variable assignments V become the gene for each member of the

GA’s population, and the associated domain for V , D, as well as the constraints C

become integrated into the gene structure and the fitness functions associated with the

specific problem. In this situation, constraints such as the legality of agent positions

on the grid are handled in the gene structure, and constraints like communication

maintenance are handled in the fitness functions.

45

IV. Simulation Testing and Results

The evolutionary algorithm-based constraint satisfaction problem was tested using

one communication fitness function and three different exploration fitness functions.

The NSGA-II settings, as well as environment specific parameters were tested using

one of the three fitness functions. The following describes both the parameter test-

ing, as well as the tests of the three exploration fitness functions against the single

communication maintenance fitness.

All three fitness functions showed consistency in the need to sacrifice area observ-

ability for communication maintenance, with “MaxArea” and “Tiled” being the most

effective. In the case where observation was better than communication, maximiz-

ing communication meant limiting observation, and in the case where communication

was better than observation, the improved communication helped, but ultimately still

required a sacrifice in observation to maximize communication.

Because of the randomness introduced by the mutation and crossover schemes,

the search contour for all of these simulations is very rough. Two adjacent solutions

or population members could be vastly different due to the highly stochastic nature

of generating position assignments for each population member.

4.1 Testing

All fitness function testing was performed using the same environment parameters.

These parameters were chosen arbitrarily and verified using tests against modified

parameters. The testing used the parameters described in Table 2. The parameter-

specific testing utilized the “MaxArea” fitness function and the default parameter

settings (Table 1) unless otherwise noted.

Generational testing was planned, however increasing the number of generations

46

Table 1. Default Simulation Parameters.

Parameter Value
Generations 100

λ 100
Number of Agents 10

Mutation Probability 90
Crossover Probability 90

Grid Size 1000x1000
Communication Radius 100

Explore Radius 100

an order of magnitude increased the simulation time by two orders of magnitude

and it was decided that this change was unnecessary. Simulations showed that after

100 generations, sufficient Pareto optimal solutions were being generated such that

solutions were being repeated often. Adding an order of magnitude to the num-

ber of generations would have resulted in 4-day simulations with no performance

improvement. It was also planned to test a larger grid space, but system mem-

ory restrictions prevented it. A grid world of 10000X10000 would require just over

38GB RAM, 2000X2000 would require 1.5GB, more than the Java Development En-

vironment (JDE) has available to it. A smaller grid space was considered, but any

substantial reduction in grid size (an order of magnitude) resulted in complete or

nearly complete coverage by 10 agents, so this result was ignored. These results are

described in the following section, but ultimately had no effect on the trend of the

gathered data.

4.2 Parameter Test Results

The following subsections describe the altered parameters for the simulation test-

ing, as well as the trends in their results. Each of the results gathered from parameter

changes is consistent with a diametric opposition between area exploration and com-

munications maintenance.

47

The default parameters for the tests are shown in Table 1 and utilized the “MaxArea”

fitness function. Parameters were altered individually and compared to the final re-

sults for validity.

Table 2. Simulation Parameters.

Parameter Value
Generations 100

λ 100
Number of Agents 10, 20

Mutation Probability 45, 90
Crossover Probability 45, 90

Grid Size 1000x1000
Communication Radius 100, 200

Explore Radius 100, 200

4.3 Observation and Communication Tests

The tests shown in Figures 5 and 6 show why assuming observability and com-

munication radii to be equal is acceptable in this problem. Improved communication

delays the need to sacrifice exploration to maintain communication. Better commu-

nication is always desirable, but there will always be a point at which communication

and exploration are no longer compatible without sacrifices to one of them.

Figure 5(a) utilizes a 200 grid unit observation radius and shows a system in which

there is a need to sacrifice exploration to maintain communication. When compared

to Figure 5(b) which uses a 100 unit observation, a similar trend is shown, but less

of the area can be observed at once, which is consistent with a reduced observational

capability.

Figure 6(a) shows a system in which the exploration radius (100 units) is less than

the communication radius (200 units). When compared to Figure 6(b), similar trends

are shown and data is still in agreement with the other results. In this simulation,

agents have the ability to communicate farther than they can observe, which means

48

(a) 200 unit Observation Radius and 100 unit Communication Radius

(b) 100 unit Observation and Communication Radius

Figure 5. 200 unit Observation Radius and 100 unit Communication Radius

they must move farther before they need to disrupt communication to maximize area

observation. The almost horizontal trend in the front from 5 network clusters to 10

49

shows that the increased communication radius helps, but only to a point. Maximizing

communication requires a sacrifice in observed space.

(a) 100 unit Observation Radius and 200 unit Communication Radius

(b) 100 unit Observation and Communication Radius

Figure 6. 100 unit Observation Radius and 200 unit Communication Radius

50

Figure 7(a) shows a system in which both observational and communication capa-

bilities are doubled. When compared to Figure 7(b), which uses a 100 unit observation

radius, it shows a consistent trade off between exploration and communication. To

achieve the most connected set of agents, with 3 distinct networks, it only becomes

possible to observe about 55% of the environment. The next most connected set of

agents, with 4 networks, allows for the observation of roughly 68% of the environ-

ment. The least connected networks, only one or 2 agents connected, allow for the

most area observation, providing roughly 88% observation of the environment.

4.4 NSGA-II Parameter Test - Mutation and Crossover Probabilities

Figure 8(a) shows a simulation with 45% mutation and crossover probabilities.

When compared to Figure 8(b), which uses 90% for its mutation and crossover prob-

abilities, it shows the same trend, in which area exploration is sacrificed for commu-

nication maintenance, and communication maintenance is sacrificed for area explo-

ration.

4.5 Fitness Function Tests

All fitness testing was done with a randomly generated population size of 100

individuals, over 100 generations, with mutation and crossover probabilities of 90%.

Each of the three exploration fitness functions, “MaxArea”, “MaxDistance”, and

“Tiled” were tested against the same communication fitness function 30 times, and

the results were aggregated together into one Pareto front for each fitness function.

No visualization was developed for this simulation.

For each of the tests performed using NSGA-II, 30 separate iterations were run,

with each iteration consisting of the 1000x1000 grid world, 10 agents with a uni-

form 100 unit radius, 100 generations each with a population size of 100, and both

51

(a) 200 unit Observation and Communication Radii

(b) 100 unit Observation and Communication Radius

Figure 7. 200 unit Observation and Communication Radii

a crossover and mutation probability of 90%. The population size and number of

generations were chosen with respect to the available computing power, being the

52

(a) 45% Mutation and Crossover Probabilities

(b) 90% Mutation and Crossover Probabilities

Figure 8. 45% Mutation and Crossover Probabilities

limits that the computers available could solve in a reasonable amount of time (sev-

eral hours). As stated earlier, NSGA-II has a computational complexity of O(M ∗λ2)

53

for each generation, where M is the number of objectives (2), and λ is the population

size (100).

The crossover and mutation probabilities of 90% are completely arbitrary, with

the hopes of introducing the most diversity into the population. These parameters

were tested against 45% mutation and crossover, as shown in section with no effect

on the final solution trends; convergence to a Pareto front was slower, but the trend

of the front itself remained the same. At each generation, the non-dominant solutions

were recorded and used as the seeds for the next generation. All of the results for each

of the 30 iterations were combined into one solution. As stated earlier, connectivity

for each is measured as the number of independent networks, with fewer being better

and representative of a larger connectivity among all agents.

The following describes the results of the individual fitness function tests. It shows

consistent opposition between the two objectives of area exploration and communi-

cations maintenance no matter the metric used to determine area exploration.

4.5.1 Maximizing Distance.

This experiment (Figure 9) measured exploration as the average distance between

all of the agents in the grid world, and returned the average distance as the best case

minus the average, resulting in a solution closer to 0 being the better solution.

These results clearly show maximizing the distance between the agents has a neg-

ative impact on the communication capabilities, and vice versa. A linear relationship

is expected, but because the return value is average distance between all agents and

not the individual distances between a set of agents, the resulting front has some

concavity associated with it.

54

Figure 9. The Pareto Front in which exploration is measured using average distance
from each agent to each other agent.

4.5.2 Maximizing Area.

This experiment (Figure 10) measured exploration as the percentage of unobserved

locations on the grid world, with a lower percentage representative of less overlap in

the area observed by the agents and more total space being observed.

The Figure 10 results show an almost linear relationship between maximizing

the observed area and maximizing the connectivity. It can be asserted that there is

a true linear relationship based on the error introduced into the calculation of the

exploration. Observed area is calculated using a grid which is marked observed or

unobserved using the communication radius and the location of the agent. It is filled

using a drawing-style circle fill algorithm which approximates the circle, resulting in

slightly different values depending on how rounding is performed.

55

Figure 10. The Pareto Front in which exploration is measured using the amount of
unobserved space on the grid world.

4.5.3 Tiled Space.

This experiment (Figure 11) measured exploration by dividing the grid world into

even sections, one for each agent. If a tile has an agent in it, it is considered covered,

and fitness is measured by the number of uncovered tiles.

The result of the tiled space clearly shows the direct conflict between spreading

out to cover all of the tiles, and maintaining a large network. In order to cover the

most tiles, with 10 agents on a 1000×1000 grid world, the agents must be positioned

outside their communications radius. A tile is approximately 500x200, and with a

communication radius of 100, the smallest number of network groups is 3; being 2

groups of 4 agents, and 1 group of 2 agents, positioned approximately in the corners,

as shown in 12.

56

Figure 11. The Pareto Front in which exploration is measured using tiles which are
either covered or uncovered.

Figure 12. This shows one of the best solutions for the tiled exploration test; each of
the tiles is covered with an agent and there are three distinct networks as shown in
red.

4.6 Domain Altering Test - Number of Agents

Figure 13(a) shows the simulation results for a 1000x1000 grid world, with 20

agents using a 100 unit observation and communication radius and 90% mutation

57

and crossover probabilities. When compared to Figure 13(b), which uses only 10

agents, it shows a consistent trend in which area observation is directly sacrificed

in order to maintain communication, and vice versa. The number of agents in the

environment has an effect on the total observed space, but the same compromises are

needed to maintain exploration and communication.

4.7 Behavioral Simulation Results

This behavioral based simulation was run with 100 separate iterations, in the

same 1000x1000 grid world, with varying communication capabilities. The results

in Tables 3 - 5 show a decrease in the average distance between an agent and its

neighbors.

Table 3. Average Distances Between Agent and Neighbors, Comm Distance = 50

CommDist 50
Without Spread 64.3083 63.2301 61.734
With Spread 61.3381 59.8581 57.8583

Table 4. Average Distances Between Agent and Neighbors, Comm Distance = 150

CommDist 150
Without Spread 183.4816 183.9411 199.752
With Spread 170.0364 168.6085 168.4061

Table 5. Average Distances Between Agent and Neighbors, Comm Distance = 300

CommDist 300
Without Spread 335.4667 362.69 568.848
With Spread 286.4364 290.0939 296.2495

Initially, it appears that the spreading capability did not work, but this is not

the case. The spreading function is the cycle detection in the neighbor list, forcing

each agent to move to a location where it only has 1 or 2 connections, representative

of an end node (one neighbor) or center node (two neighbors). This puts the agent

58

(a) 20 agents in the environment

(b) 10 agents in the environment

Figure 13. 20 Agents in the Environment

at the absolute limits of its communication, slightly closer to its neighbors for better

communication, but farther away from more agents. This provides for a more uniform

59

Figure 14. An example of the visualization of the behavior-based simulation.

distribution of agents within the environment. Agents are not as spread out, but they

are more ideally placed in that they do not overlap as much space, and do not position

themselves in a location that makes their contribution to the entire network redundant

and useless.

This is consistent with the GA test results, in that the ideal solution for an agent

looking to maximize both its observed area or maximum average distance from all

other agents is to position itself at the very edge of its communication radius.

60

V. Conclusions

This research formulated a constraint satisfaction-based approach to solving a

multi-agent positioning system with multiple competing objectives, utilizing the ge-

netic algorithm NSGA-II to solve the CSP. As part of continuing trust research, it is

necessary for groups of agents to maintain communication with each other in order

to maintain trust.

5.1 Summary

Area exploration and group communications maintenance were described and

solved in a fully distributed and uncoordinated way and show that exploration and

communications maintenance, without any element of coordination, are diametrically

opposed goals. Moving away from a group to explore requires the sacrifice of losing

communication, while moving to the group to communicate limits the exploration of

the space. Results consistently show high area exploration made up of keeping average

distances between agents, covering the most unobserved space, or observing the most

tiled zones always resulted in limited communication, with stronger communication,

fewer individual networks, always resulting in less observation. In the cases where

observation and communication radii were different, the simulations clearly showed

this limitation. When observation is better than communication, approximately 60%

area observation results in 5 different network clusters, and approximately 90% area

observation results in no network at all, with all 10 agents unconnected from each

other. When observation is weaker than communication, approximately 23% area

observation results in 3 distinct networks and good connectivity, and approximately

38% area observation results in no network at all. In between those extremes lie

several compromises that are consistent with agents moving back and forth trying to

61

optimize one goal over the other.

It then becomes necessary to implement some form of coordination, either in

planning exploration routes, creating rules about maintaining certain distances from

other agents (such as keeping agents at the edge of their observation or communication

range), or moving in a group.

5.2 Future Work

The intended direction of this work was to integrate a multi-objective evolutionary

algorithm with a traditional DEC-POMDP solver, to allow modeling of the multi-

objective nature of the area defense problem. This solver would have then been

tested against a more traditional DEC-POMDP solver in which the two objectives

were artificially biased against each-other in an attempt to achieve a similar result.

Due to oversights made by the researcher in looking at this problem, only a static

case was considered, in which no evolving agent models were developed, and the

balance between agent exploration and agent communication was determined in a

non-dynamic way.

Anyone looking to pick up this research should begin by modifying the environ-

ment to make it more complex. This can be achieved by adding walls, heterogeneous

agent capabilities, and other elements that would limit observation and communica-

tion in the environment. Research should also look at development of a proper DEC-

POMDP model for this area exploration and communication maintenance problem

and focus on making the decision making process for the DEC-POMDP easier. This

can probably be done with swarm or flocking coordination techniques, or artificially

prioritizing the goals and rewards based on the environment itself. Using central-

ized exploration planning may also become necessary, as complete distribution is a

challenge yet to be undertaken.

62

This research, specifically the information contained in the Pareto fronts, can be

used by a researcher to decide how they wan exploration and communication to relate

to each other for their simulation. They could decide that keeping the agents at a

specific distance from each other is ideal, or they could decide that one simulation

could focus on exploration, while another focuses on communication.

63

Bibliography

[1] “The Network Simulator ns-2”, 2001. URL http://www.isi.edu/nsnam/ns/.

[2] “JiST/SWANS - Java in Simulation Time / Scalable Wireless Ad hoc Network

Simulator”, 2004. URL http://jist.ece.cornell.edu/.

[3] “trust. Merriam-Webster Online Dictionary”. Feb 2010. URL http://www.

merriam-webster.com/dictionary/trust.

[4] Bäck, Thomas. Evolutionary Algorithms in Theory and Practice. Oxford Uni-

versity Press, Oxford, NY, 1996.

[5] Barber, K. Suzanne and Joonoo Kim. “Belief Revision Process Based on Trust:

Agents Evaluating Reputation of Information Sources”. Trust in Cyber-societies,

LNAI 2246, 73–82. Springer, 2001.

[6] Boutilier, Craig. “Planning, Learning and Coordination in Multiagent Decision

Processes”. In Theoretical Aspects of Rationality and Knowledge, 195–210. Mor-

gan Kaufmann, 1996.

[7] Cao, Y. Uny, Alex S. Fukunaga, and A. B. Kahng. “Cooperative Mobile Robotics:

Antecedents and Directions”. Autonomous Robots, 4:226–234, 1997.

[8] Coello Coello, Carlos A., Gary B. Lamont, and David A. Van Veldhuizen. Evo-

lutionary Algorithms for Solving Multi-Objective Problems. Springer, New York,

NY, 2nd edition, 2007.

[9] Dean, Thomas, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. “Plan-

ning Under Time Constraints in Stochastic Domains”. Artificial Intelligence,

volume 76, 35–74. Elsevier Science, Providence, RI, 1995.

64

[10] Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. “A Fast

Elitist Multi-Objective Genetic Algorithm: NSGA-II”. IEEE Transactions on

Evolutionary Computation, 6:182–197, 2000.

[11] Dudek, Gregory, Michael R. M. Jenkin, and David Wilkes. “A taxonomy for

multi-agent robotics”. Autonomous Robots, 3:375–397, 1996.

[12] Durillo, Juan J., Antonio J. Nebro, Francisco Luna, Bernabé Dorronsoro, and En-

rique Alba. jMetal: A Java Framework for Developing Multi-Objective Optimiza-

tion Metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes

y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Cam-

pus de Teatinos, December 2006.

[13] Eiben, A. E., J.I. van Hemert, E. Marchiori, and A. G. Steenbeek. “Solving

Binary Constraint Satisfaction Problems using Evolutionary Algorithms with

an Adaptive Fitness Function”. Proceedings of the 5th Conference on Parallel

Problem Solving from Nature, number 1498 in LNCS, 196–205. Springer, 1998.

[14] Eiben, A.E. and J.E. Smith. “What is an Evolutionary Algorithm?” Introduction

to Evolutionary Computing, 15–36. Springer, Cambridge, MA, 2nd edition, 2007.

[15] Ferentinos, Konstantinos P. and Theodore A. Tsiligiridis. “Adaptive design op-

timization of wireless sensor networks using genetic algorithms”. Computer Net-

works: The International Journal of Computer and Telecommunications Net-

working, 51(4):1031–1051, 2007.

[16] Fonseca, Carlos M. and Peter J. Fleming. “An Overview of Evolutionary Al-

gorithms in Multiobjective Optimization”. Evolutionary Computation, 3:1–16,

1995.

65

[17] Gerkey, Brian P. and Maja J Mataric. “Sold!: Auction methods for multi-robot

coordination”. IEEE Transactions on Robotics and Automation, Special Issue

on Multi-robot Systems, 758–768, 2001.

[18] Gmytrasiewicz, Piotr J. and Prashant Doshi. “A Framework for Sequential Plan-

ning in Multi-Agent Settings”. Journal of Artificial Intelligence Research, 24:24–

49, 2004.

[19] Goldman, Robert P., David J. Musliner, Mark S. Boddy, Edmund H. Durfee,

and Jianhui Wu. “Unrolling Complex Task Models into MDPs”. Proceedings of

the American Association for Artificial Intelligence, 2007.

[20] Guo, Yi, Lynne E. Parker, and Raj Madhavan. “Collaborative Robots for In-

frastructure Security Applications”. Proceedings of the International Symposium

on Collaborative Technologies and Systems, 185–200. 2007.

[21] Hauskrecht, Milos and Branislav Kveton. “Approximate Linear Programming

for Solving Hybrid Factored MDPs”, 2006.

[22] Ist, Ines Lynce, Ins Lynce, and Jol Ouaknine. “Sudoku as a SAT Problem”.

Proceedings of the 9th International Symposium on Artificial Intelligence and

Mathematics, AIMATH 2006. Springer, 2006.

[23] Jang, Myeong-Wuk, Amr Ahmed, and Gul Agha. “Efficient Agent Communica-

tion in Multi-Agent Systems”, 2004.

[24] Jin, Yaochu, Tatsuya Okabe, and Bernhard Sendhoff. “Adapting Weighted Ag-

gregation for Multiobjective Evolution Strategies”. Proceedings of First Interna-

tional Conference on Evolutionary Multi-Criterion Optimization, Leture Notes

in Computer Science, 96–110. Springer, 2001.

66

[25] Jourdan, Damien B. and Olivier L. de Weck.

[26] Jr., Ed Pegg and Eric W. Weisstein. “Sudoku”. MathWorld - A Wolfram Web

Resource. URL http://mathworld.wolfram.com/Sudoku.html.

[27] Kang, Chih-Wei and Jian-Hung Chen. “Multi-objective evolutionary optimiza-

tion of 3D differentiated sensor network deployment”. GECCO ’09: Proceedings

of the 11th Annual Conference Companion on Genetic and Evolutionary Com-

putation Conference, 2059–2064. 2009.

[28] Kotz, David, Calvin Newport, and Chip Elliott. The Mistaken Axioms of

Wireless-Network Research. Contract, Dartmouth College of Computer Science,

July 2003.

[29] Marin, Olivier, Pierre Sens, Jean pierre Briot, Zahia Guessoum, and Bp Le Havre

Cedex. “Towards Adaptive Fault Tolerance For Distributed Multi-Agent Sys-

tems”, 2009.

[30] Mataric, Maja J., Gaurav S. Sukhatme, and Esben Astergaard. “Multi-robot

Task Allocation in Uncertain Environments”. Autonomous Robots, 14(2):255–

263, 2003.

[31] Mausam, Daniel, and Daniel S. Weld. “Solving Relational MDPs with First-

Order Machine Learning”. In Proceedings ICAPS Workshop on Planning under

Uncertainty and Incomplete Information. 2003.

[32] Mehta, Neville. “Divide-and-Conquer Methods for Solving MDPs”. Oregon State

University, 2006.

[33] Melcher, Joachim. JNSGA2: Java Non-Dominated Genetic Sorting Algorithm

II. Technical report, Intitut AIFB, Universiaet Karlsruhe (TH), 2007.

67

[34] Moore, Brandon J. and Kevin M. Passino. “Distributed Coordination Strategies

for Wide-Area Patrol”. Journal of Intelligent and Robotic Systems, 56(1–2):23–

45, 2009.

[35] Mostofi, Yasamin. “Decentralized Communication-Aware Motion Planning in

Mobile Networks: An Information-Gain Approach”. Journal of Intelligent and

Robotic Systems, 56(1-2):233–256, 2009.

[36] Parsopoulos, K. E. and M. N. Vrahatis. “Particle Swarm Optimization Method in

Multiobjective Problems”. Proceedings of the 2002 ACM Symposium on Applied

Computing (SAC 2002), 603–607. ACM Press, 2002.

[37] Pastore, Tracy Heath, H. R. Everett, and Kevin Bonner. “Mobile Robots for

Outdoor Security Applications”. Proceedings of the American Nuclear Society

8th International Topical Meeting on Robotics and Remote Systems. 1999.

[38] Ray, Indrajit and Sudip Chakraborty. “A Vector Model of Trust for Developing

Trustworthy Systems”. European Symposium on Research in Computer Security,

volume 3193, 260–275. Springer, 2004.

[39] Rendl, Andrea. “N-Queens Problem”. TAILOR: Tailoring Constraint Models

to Solvers, August 2009. URL http://www.cs.st-andrews.ac.uk/~andrea/

tailor/nqueens.png.

[40] Rojas, Mara Cristina Riff and Rioe Rojas. “From quasi-solutions to solution:

An Evolutionary Algorithm to solve CSP”. In Proceedings of the Principles

and Practice of Constraint Programming Conference (CP96, 367–381. Springer-

Verlag, 1996.

[41] Russell, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2003.

68

[42] Schillo, Michael, Bettina Fley, Michael Florian, Frank Hillebrandt, and Daniela

Hinck. “Self-Organization in Multiagent Systems: From Agent Interaction to

Agent Organization”, 2002.

[43] Seuken, Sven and Shlomo Zilberstein. “Formal models and algorithms for de-

centralized decision making under uncertainty.” Autonomous Agents and Multi-

Agent Systems, 17(2):190–250, 2008.

[44] Seymour, Richard. The Trust-Based Interactive Partially Observable Markov

Decision Process. Master’s thesis, The Air Force Institute of Technology, 2009.

[45] Seymour, Richard and Gilbert L. Peterson. “A Trust-Based Multiagent System”.

Proc. of the 2009 IEEE Int. Conf. on Information Privacy, Security, Risk and

Trust (PASSAT ’09), 109–116. IEEE Computer Society, 2009.

[46] Simmons, Reid, David Apfelbaum, Wolfram Burgard, and Dieter Fox Mark

Moors. “Coordination for multi-robot exploration and mapping”. Proceedings of

the AAAI National Conference on Artificial Intelligence, 852–858. AAAI, 2000.

[47] Sosic, Rok. “A Parallel Search Algorithm for the N-Queens Problem”. IEEE

Transactions on Systems, Man, and Cybernetics, 21, 1994.

[48] Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. The MIT Press, Cambridge, MA, 1998.

[49] Wang, Chenggang, Saket Joshi, and Roni Khardon. “First Order Decision Di-

agrams for Relational MDPs”. Journal of Artificial Intelligence Research, vol-

ume 31, 431–472. Tufts University, Medford, MA, 2008.

[50] Weiss, Gerhard. Multiagent Systems: A Modern Approach to Distributed Artifi-

cial Intelligence. The MIT Press, 2000.

69

[51] Williams, Martyn. “Robots Take Dangerous Jobs”, April 2003. URL http:

//www.pcworld.com/article/110127/robots_take_dangerous_jobs.html.

[52] Wooldridge, Michael. An Introduction to Multiagent Systems. John Wiley and

Sons, Liverpool, UK, 2002.

[53] Zeng, Xiang, Rajive Bagrodia, and Mario Gerla. “GloMoSim: A Library for

Parallel Simulation of Large-scale Wireless Networks”. Proceedings of the 12th

Workshop on Parallel and Distributed Simulations – PADS ’98, 154–161. 1998.

[54] Ziviani, Artur, Serge Fdida, Jos F. De Rezende, Otto Carlos, and M. B. Duarte.

“Toward a measurement-based geographic location service”. Proceedings of

PAM2004, Antibes Juan-les-Pins, 43–52. 2004.

[55] Zou, Yi and Krishnendu Chakrabarty. “Sensor deployment and target localiza-

tion in distributed sensor networks”. ACM Transactions on Embedded Computing

Systems (TECS), 3(1):61–91, 2004.

70

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

12–03–2010 Master’s Thesis Sept 2008 — Mar 2010

Multi-Objective Constraint Satisfaction
for Mobile Robot Area Defense

ENG09-219

Mayo, Kenneth W., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/10-03

Air Force Research Labs, Sensors Directorate, Reference Branch
Attn: Dr. Jacob Campbell (jacob.campbell@wpafb.af.mil)
2241 Avionics Circle, Area B, Bldg 620
Wright-Patterson AFB, OH
(937) 785-6127x4154

AFRL

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

In developing multi-robot cooperative systems, there are often competing objectives that need to be met. For example in
automating area defense systems, multiple robots must work together to explore the entire area, and maintain consistent
communications to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks
robots to meet the two specific goals of exploration and communication maintenance in an uncoordinated environment
reducing the need for a user to pre-balance the objectives. This multi-objective problem is defined as a constraint
satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Applying the algorithm to
the area defense problem, results show exploration and communication without coordination are two diametrically
opposed goals, in which one may be favored, but only at the expense of the other. This work also presents suggestions for
anyone looking to take further steps in developing a physically grounded solution to this area defense problem.

constraint satisfaction, multi-objective, evolutionary algorithm

U U U U 83

Dr. Gilbert L. Peterson

(937) 255–3636x4281, gilbert.peterson@afit.edu

